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This paper presents how a non-commutative version of the entropy extremali-
zation principle allows to construct new quantum hydrodynamic models. Our
starting point is the moment method, which consists in integrating the quantum
Liouville equation with respect to momentum p against a given vector of mono-
mials of p. Like in the classical case, the so-obtained moment system is not
closed. Inspired from Levermore’s procedure in the classical case, (26) we propose
to close the moment system by a quantum (Wigner) distribution function which
minimizes the entropy subject to the constraint that its moments are given. In
contrast to the classical case, the quantum entropy is defined globally (and not
locally) as the trace of an operator. Therefore, the relation between the moments
and the Lagrange multipliers of the constrained entropy minimization problem
becomes nonlocal and the resulting moment system involves nonlocal operators
(instead of purely local ones in the classical case). In the present paper, we
discuss some practical aspects and consequences of this nonlocal feature.

KEY WORDS: Density matrix; quantum entropy; quantum moments; local
quantum equilibria; quantum BGK models; quantum hydrodynamics.

1. INTRODUCTION

The aim of this paper is to present a new approach to quantum hydro-
dynamics. More precisely, starting from the quantum Liouville equation,
we derive a whole hierarchy of moment models including quantum hydro-
dynamical models as well as higher order moment models. The so-obtained
models will be referred to as ‘‘Quantum Moment Hydrodynamics.’’



The derivation of quantum hydrodynamic models from first principles
has attracted considerable attention in the recent past. The quest for such
models is driven by the growing field of nanotechnology applications. The
derivation of reliable yet computationally affordable many-particle quantum
models determines the possibility of efficient industrial design and fabri-
cation of the next generation of devices. However, few attempts have been
successful in this direction. Indeed, away from the complete resolution
of the Schrödinger equation (or even worse, of the quantum Liouville
equation), which is computationally expensive, and the use of continuum
models with ad-hoc phenomenological closure and limited reliability, few
alternatives are available. The starting point for the derivation of quantum
hydrodynamic models is the quantum Boltzmann equation of the form

i( “tr=[H, r]+Q(r), (1.1)

for the effective single particle density matrix r(x, y), where H is the
Hamiltonian H=− (

2

2m* |Nx |2+V(x), the symbol [ · , · ] denotes the usual
commutator and the operator Q models particle collisions. ( denotes the
reduced Planck constant and mg is the particle (effective) mass. To derive
fluid like models for macroscopic quantities it is convenient to consider
instead the equivalent formulation via Wigner functions, which is of the
form

“t fw+divx
1 1

mg pfw
2− h[V] fw=Qw(fw), (1.2)

where the Wigner function fw(x, p, t) and the pseudo-differential operator
h are related to the density matrix r and the potential V via the Wigner
transform

fw(x, p, t)=(2p)−d F
R

d
r 1x −

(

2
g, x+

(

2
g2 e ig · p dg,

h[V]=
i
(

5V 1x+
(

2i
Np
2− V 1x −

(

2i
Np
26

(1.3)

where r(x, y) is the integral kernel of r and d is the space dimension
(an integer multiple of 3 according to the number of degrees of freedom).
Moment systems for the Wigner–Boltzmann equation (1.2) are equations
for a given set of moments

mn(x, t)=F
R

d
on(p) fw(x, p, t) dp, n=0,..., N, (1.4)
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which are obtained by building the corresponding moments of (1.2). The
main problem in closing this system, i.e., expressing the highest order
moments in the resulting equations in terms of the lower order moments, is
that the collision operator Q (or Qw in (1.2)) is not available in a suffi-
ciently simple form, to be used in a Chapman–Enskog-like approach to
moment closures. Collision operators for scattering with phonons on the
weak coupling limit have been derived and analyzed in refs. 2, 5, 12 and
quantum versions of Fokker–Planck type operators have been derived in
refs. 3 and 6.

First attempts towards the derivation of quantum hydrodynamic
models have used BKW waves. Writing the wave-function as k=`n(x, t)
× exp(iS(x, t)), where n is the probability of presence and S is the phase
and inserting it into the Schrödinger equation gives rise to a set of two
equations for n and n NS which mimic the clasical density and momentum
conservation equations. Compared with the classical case, the momentum
equation involves an additional term, called the Bohm potential. This
approach has been investigated in refs. 16, 17, 20, and 23. This is however
a pure-state model which does not incorporate mutli-particle effects and
which can be viewed as a zero-temperature model. Finite temperature
effects have been taken into account in ref. 18 through the use of a non-
linear Schrödinger equation and gives rise to a momentum equation with a
nonlinear enthalpy relation. The equation-of-state is local (i.e., the pressure
(or the enthalpy) depends locally on the density at the same point). In
ref. 22, it is argued that the Bohm potential approach is not consistent with
the entropy condition. The approach presented in this paper brings a cure
to this problem.

Other approaches (11, 13) make use of moment closures of the Wigner
equation using semiclassical asymptotics (i.e., a limit ( Q 0 where ( is the
Planck constant) for thermodynamical equilibrium states as closures. They
give rise to local equations-of-state as well, which coincide with the pre-
vious theories up to constant factors. Related to this approach are moment
closure theories of the Wigner equation using small-field asymptotics for
thermodynamical equilibria. (14, 15) These give rise to nonlocal equations-of-
state. However, the nonlocality enters only through the potential.

The idea behind the work presented in this paper is to use a thermo-
dynamic approach using the minimal amount of information about the
collision operator necessary to derive moment equations. That is we
assume knowledge about the corresponding moments of the collision
operator and the existence of an entropy which is dissipated by the colli-
sions. Our approach bears strong similarities with the theory of NESOM
(for Non-Equilibrium Statistical Operator Mechanics) by Zubarev and
coworkers (28, 36) (see also the review paper by Luzzi (27)). However, we give
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a neater (and to some extent, more practical) mathematical framework
which, we believe, will be useful for further developments of the theory. We
shall elaborate more on the relation between our theory and NESOM in
Section 4, Remark 4.2.

Our approach consists in taking moments of the density matrix equa-
tion (or quantum Liouville equation), and then, closing the resulting set of
moment equations with an equilibrium density matrix. This equilibrium is
found as an extremum of the entropy functional subject to the constraints
that its moments coincide with those of the density matrix we are consid-
ering. This approach is therefore similar to Levermore’s closure moment
hierarchies (26) or to the extended thermodynamics approach (29) for classical
systems

To be more, specific, let a set of polynomials o(p)=(o0(p),..., oN(p))
be given. To any r, we associate a set of moments m[r]=(m0(x),...,
mN(x)) defined by duality as the representation of the linear functionals
l Q Tr{r Op(l · o)}, where l=(l0(x),..., lN(x)), l · o=;i l i(x) oi(p) and
Op means the Weyl quantization of a symbol (i.e., a function of position x
and momentum p) into an operator. This definition of moments by duality
will prove more convenient in connection with the entropy minimization
principle. If the chosen set of polynomials is equal to (1, p, |p|2/2mg), the
associated moments correspond to the usual hydrodynamic quantities, i.e.,
local density, momentum and energy (per particle). If a larger set is chosen,
the associated moments correspond to higher order hydrodynamic quanti-
ties like the pressure tensor, heat flux vector, higher order heat flux tensor,
etc., according to the terminology of extended thermodynamics.(29) For
instance, the pressure tensor will be associated with the monomials pi pj

where pi and pj denote the components of the momentum vector in the ith
and jth direction, respectively.

Now, we turn to the definition of an equilibrium density matrix which
satisfies given moment constraints. Such an equilibrium minimizes the
entropy (defined as H(r)=Tr{h(r)} where h is a suitable convex function,
like, e.g., the Boltzmann entropy h(r)=r(ln(r) − 1)). In this work, we
show that this constrained minimization problem has the solution rm=
(hŒ)−1 (Op(m · o)) where m=(m0(x),..., mN(x)) are the Lagrange multipliers
of the moment constraints {m[r]=m given}. (hŒ)−1 is the inverse function
of the derivative of h. Functions of operators are given a meaning in the
sense of functional calculus.

It is now possible to get back to the problem of deriving moment
models from the quantum Liouville equation. Taking the moments of the
Liouville equation (which is now a precise concept), we can close the chain
of moment equations by using the equilibrium just defined. According to
the chosen set of polynomials and the number of moments involved, we
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obtain a hierarchy of moments systems which we call Quantum Moment
Hydrodynamics. We note that such a closure is different from a single-state
closure as it takes into account many-particle interactions through the
entropy minimization procedure. However, we should recover the single-state
closure by a zero-temperature asymptotics (for ( being fixed) of our moment
models. The investigation of this point is left to future work. Also, the
moment systems should obviously constitute an approximation of the original
quantum kinetic system (1.1). However, since the expression of Q(r) is not
known, assessing the accuracy of this approximation is extremely delicate.

The goal of the present paper is to develop these concepts. The paper
is organized as follows: in Section 2, we recall Levermore’s approach to
moment closure hierarchies in the classical case, however giving it a pre-
sentation which makes its extension to the quantum case more natural.
Then, in Section 3, we extend Levermore’s approach to the quantum case,
developing our definition of moment. We elaborate more on the fluid
entropy and compare our theory with NESOM in Section 4. Quantum
moment hydrodynamics systems are derived and studied in Section 5. In
particular, it is shown that quantum hydrodynamics for the usual set of
moments (density, momentum, and energy) differs from classical hydro-
dynamics by a possibly non-scalar pressure tensor and nonzero heat flux
vector. These are related nonlocally to the basic moments through the equi-
librium density matrix. Higher order quantum moment systems exhibit
similar features. Finally, as noticed in this section, it is possible to make
sense to quantum BGK relaxation systems. A conclusion is drawn in Section 6.
Finally, technical details are deferred to two appendices (Appendices A
and B).

It should be stressed that most of the mathematical properties stated
in this paper are given only formal proofs. Fully rigorous proofs will require
a lot of mathematical developments which are beyond the scope of the
present paper. However, a practical usage of these new models does not
require that all the mathematical theory is settled. Indeed, this paper
should rather be viewed as a presentation of new models and as a
programme definition for future work.

The results of the present work have been announced in ref. 9.

2. ENTROPY MINIMIZATION PRINCIPLES AND MOMENT CLOSURE

HIERARCHIES IN THE CLASSICAL CASE

In this section, we mainly review the approach proposed by Levermore(26)

in the classical case. However, we shall present the entropy minimization
principle in a slightly different (but completely equivalent) form which will
make it more suitable to an extension to the quantum case.
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In classical kinetic theory, the basic object is the particle distribution
function f(x, p, t) where x ¥ Rd is the position, p ¥ Rd is the momentum,
and t is the time. f is a probability distribution and is therefore normalized
according to

F
R

2d
f(x, p) dx dp=1. (2.1)

In all this work, we shall assume that the total number N of particles in
the system is fixed. This hypothesis is not essential in the classical case, but
it will greatly simplify the presentation of the quantum case. The distribu-
tion function f is a solution of the so-called Boltzmann equation:

“f
“t

+{Ĥ, f}=Q(f), (2.2)

where Ĥ(x, p) is the particle Hamiltonian, {Ĥ, f} is the Poisson bracket

{Ĥ, f}=NpĤ · Nx f − NxĤ · Np f,

and Q(f) is a collision operator, which models the interactions of the par-
ticles among themselves or with the surrounding medium.

On the other hand, the physics of continua considers averaged quanti-
ties which only depend on the position variable such as the mean density,
momentum or energy. These quantities are defined as moments of the
distribution function f. More specifically, let oi(p), i=0,..., N be N+1
independent functions of p and denote by o(p)=(oi(p))i=0,..., N the vector
of monomials. The associated moments ki(f)(x) of f(x, p) are defined by:

ki(f)(x)=F
R

d
f(x, p) oi(p) dp, -x.

The equations for k(f)=(ki(f))i=0,..., N are obtained by multiplying (2.2)
by oi(p) and integrating with respect to p:

“ki(f)
“t

+F
R

d
oi(p){Ĥ, f} dp=F

R
d

oi(p) Q(f) dp. (2.3)

In most cases the integrals in (2.3) cannot be expressed in terms of the
functions ki(f) alone. In order to reduce system (2.3) to a closed system
for the functions ki, some assumptions must be made on the distribution
function f. According to statistical physics, the most likely distribution
function (upon a certain number of realizations) is a minimum of the

592 Degond and Ringhofer



entropy functional among functions whose moments are given by the
functions ki. Following ref. 26, we use this Ansatz and replace f in the
integrals of (2.3) by this distribution function.

The minimization principle (or Gibbs minimization principle, see
ref. 4) can be formulated as follows. Let h be a smooth strictly convex
function defined on [0, .) and define the entropy functional H(f) acting
on functions f(x, p) associated with h by:

H(f)=F
R

2d
h(f(x, p)) dx dp.

Let m=(mi(x))i=0,..., N be N+1 given functions of the position variable x.
We are concerned with the following minimization problem (Gibbs problem):
find the solution fm of

H(fm)=min{H(f) | f satisfies ki(f)(x)=mi(x), -x, -i}. (2.4)

The normalization condition (2.1) is not included in the constraints of (2.4).
Rather, we assume that the constant function is contained in o(p), say
o0(p)=1. Then, m0(x) is the probability of presence of a particle in the
neighbourhood of x and is such that > m0(x) dx=> f(x, p) dx dp. We
restrict the set of moments to those satisfying

F
R

d
m0(x) dx=1, (2.5)

so that the constraint (2.1) is satisfied, as soon as the constraints of (2.4)
are satisfied.

In most physics textbooks, the tradition is to use the opposite sign for
the entropy (i.e., to suppose that it is a concave function) and to write the
Gibbs principle as a constrained maximization problem. It is the mathe-
maticians’ usage however to use the opposite convention. Of course, the
two conventions are completely equivalent.

We note that this problem can be equivalently stated as

H(fm)=min 3H(f) | f satisfies Kl(f)=F
R

d
m · l dx,

-l(x)=(l i(x))i=0,..., N
4 , (2.6)

where, we have introduced

Kl(f)=F
R

d
k(f) · l(x) dx=F

R
2d

f(x, p) o(p) · l(x) dx dp, (2.7)
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and, for two vectors a and b of RN+1, we write a · b=;i aibi. The arbitrary
functions l=(l i(x))i=0,..., N are the Lagrange multipliers of the constraints.

According to classical optimization theory, the constrained optimiza-
tion problem (2.4) can be equivalently formulated in terms of a saddle-
point problem for the Lagrangian

Lm(f, l)=H(f) −1Kl(f) − F
R

d
m(x) · l(x) dx2 , (2.8)

where the Lagrange multipliers l=(l i(x))i=0,..., N are functions of x. The
saddle-point problem is formulated as follows:

H(fm)=min
f

max
l

Lm(f, l)=max
l

min
f

Lm(f, l), (2.9)

where now the minimum over f or the maximum over l are unconstrained
problems.

Let us now consider the unconstrained problem

Lm(fl, l)=min
f

Lm(f, l). (2.10)

Then, the necessary condition for extremality leads to

fl(x, p)=(hŒ)−1 (l(x) · o(p)) (2.11)

where hŒ is the derivative of h and (hŒ)−1 is the inverse function of hŒ (which
exists since hŒ is strictly increasing). fl is called the equilibrium distribution
function and l is called the system of entropic variables.

Now, the solution fm of the constrained minimization problem (2.4) is
an equilibrium distribution function fm where m=mm is a solution of the
unconstrained maximization problem

H(fm)=Lm(fm m, mm)=max
l

Lm(fl, l). (2.12)

The resolution of (2.12) leads to

fm=fm m, (2.13)

where mm is such that

ki(fm m)=mi, -i=1,..., N. (2.14)
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We note that this relation is equivalent to saying that

Kl(fm m)=F
R

d
m(x) · l(x) dx, -l(x). (2.15)

This last relation is in a form which will be easily extended to the quantum
case. The entropic variables m and the moment (or conservative) variables
m are dual (in the Legendre transform sense) through the fluid entropy (see
Section 4 where this aspect is developed in the quantum case).

Now, following ref. 26, a closed set of moment equations can be
derived from (2.3) by replacing f in the integrals appearing in (2.3) by
the solution of the Gibbs principle associated with the constraint that the
moments are ki(f). This leads to a closed system of equations for the
moments mi=ki(f) which is written as follows:

“mi

“t
+F

R
d

oi(p){Ĥ, fm} dp=F
R

d
oi(p) Q(fm) dp. (2.16)

For future use, we note that system (2.16) can be written in weak form as:

“

“t
F

R
d

m · l dx+F
R

2d
l(x) · o(p){Ĥ, fm} dp dx

=F
R

2d
l(x) · o(p) Q(fm) dp dx, (2.17)

for all l(x). We shall extend this weak form of the hydrodynamic equations
to the quantum case. The key point is to interpret the integrals in (2.17) in
an operator way.

We now comment on the form (2.4) of the Gibbs minimization prin-
ciple. In ref. 26, the Gibbs principle is given a local form. For a function
f(p), we denote by H̃ the ‘‘local’’ entropy functional

H̃(f)=F
R

d
h(f(p)) dp.

Then, for any given (N+1)-tuple of real numbers m̃=(m̃i)i=0,..., N, the local
Gibbs principle reads: find f̃ m̃(p) which realizes

H̃(f̃ m̃)=min{H̃(f) | f(p) satisfies Ki(f)=m̃i, -i}. (2.18)
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Of course, for f(x, p), we have

H(f)=F
R

d
H̃(f(x, · )) dx.

The solution of the ‘‘local’’ Gibbs minimization principle (2.18) is obviously

f̃ m̃=(hŒ)−1 (m̃ m̃ · o), (2.19)

where m̃ m̃ is such that

Ki(f̃ m̃)=m̃i, -i. (2.20)

This defines a local mapping m̃ ¥ RN+1
Q m̃ m̃ ¥ RN. The solution of the

global Gibbs principle (2.13) is obviously related to that of the local one
(2.19) by:

mm(x)=m̃m(x).

However, the global form (2.4) of Gibbs principle can be extended to the
quantum case, while the local form cannot. Quantum mechanics is a
nonlocal theory and requires that a nonlocal Gibbs principle be used.

Let us review some classical cases. Suppose that the Hamiltonian is
given by

Ĥ(x, p)=e(p)+V(x, t), e(p)=
|p|2

2mg ,

where e(p) is the kinetic energy, V(x, t), the potential energy and mg the
particle mass. Suppose that the vector o of monomials is a d+2-dimen-
sional vector (d being the dimension of the physical space) consisting of

o(p)=(1, (pi)i=1,..., d, |p|2/(2mg)). (2.21)

The functions involved in o(p) correspond to the physically conserved
quantities (i.e., the probability of presence, the d components of the
momentum per particle and the energy per particle). As often in the litera-
ture, we shall label the components of this vector according to o(p)=
(o0(p), (oi(p))i=1,..., d, od+1(p)). In thermodynamics, the associated vector
of Lagrange multipliers is usually written

l=1mc

T
,

u
T

, −
1
T
2 :=(l0, (l i)i=1,..., d, ld+1),
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where mc ¥ R is the chemical potential, u ¥ Rd is the mean velocity and
T ¥ R+ is the temperature. The associated moment vector in turn is written

m=(n, q, W) :=(m0, (mi)i=1,..., d, md+1),

where n ¥ R+ is the probability of presence, q ¥ Rd is the mean momentum
per particle and W ¥ R+ is the mean energy per particle. Multiplying n, q,
and W by the total number of particles N gives the number density, the
fluid momentum and the fluid energy.

Let us consider specifically the Boltzmann entropy:

h(f)=kB f(ln f − 1), (2.22)

where kB is the Boltzmann constant. In this case, the equilibrium distribu-
tion function fl is the classical Maxwellian:

fl=exp 3 1
kB

1l0+ C
d

i=1
l i pi+ld+1

|p|2

2mg
24

=exp 3 1
kBT

1mc+ C
d

i=1
ui pi −

|p|2

2mg
24 . (2.23)

Then, the mapping m Q mm relates (n, q, W) to (mc, u, T) in the following
way:

n=h−d
P (2pmgkBT)d/2 exp

mc+mg |u|2/2
kBT

, q=mgnu,

W=
1
2

mgn |u|2+
d
2

nkBT.

With this transformation, the Maxwellian takes the more familiar form

fl=
n

(2pmgkBT)d/2 exp 3−
|p − mgu|2

2mgkBT
4 . (2.24)

Supposing that the collision operator is mass, momentum and energy
conservative, i.e., satisfies > Q(f) oi(p) dp=0 for all considered oi,
Eqs. (2.16) can be simplified and gives rise to the usual classical hydrody-
namic equations:
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“n
“t

+N · (nu)=0, (2.25)

mg 1“nu
“t

+N · (nu é u)2+N(nkBT)=−n NV, (2.26)

“W
“t

+N · (Wu)+N · (nkBTu)=−n NV · u. (2.27)

Therefore, the above considered moments give rise to the balance equations
for the physically conserved quantities (i.e., mass, momentum and energy).

If other moments than those corresponding to the physically con-
served quantities, such as the heat flux (corresponding to o(p)=pi |p|2/2),
the pressure tensor anisotropy (i.e., o(p)=pi pj), or the higher order heat
flux tensor (i.e., o(p)=pi pj pk) are considered, new sets of hydrodynamic-
like equations are obtained. This gives rise to the so-called ‘‘moment
closure hierarchies’’ of Levermore, (26) which are also closely related with
the theory of extended thermodynamics.(29) Then, the equilibrium distribu-
tion functions (2.11) depend on a larger dimensional vector of Lagrange
multipliers l than the Maxwellians (2.23), which therefore appear as a
special case of these equilibria. If one linearizes these equilibria about the
Maxwellians (considering that the higher order moments, after convenient
normalization, are small), one obtains another moment closure method
first proposed by Grad. (19)

However, the following considerations should be borne in mind.
First, the N-tuple of monomials o(p) cannot be completely arbitrary.
It has to satisfy a certain number of requirements such as gallilean
invariance, or the fact that the moments of fl must be defined. These
constraints are detailed in ref. 26. Second, the existence and uniqueness
of solutions of the minimization problems is by far not guaranteed.
Moment realizability conditions, i.e., conditions that guarantee that the
constrained minimization problem has a solution, as well as uniqueness
conditions have been studied in refs. 1, 24, 25, and 32. When moments
corresponding to physically non-conserved quantities (i.e., such that the
corresponding > Q(f) oi(p) dp is nonzero) are considered, a particular
care must be taken in the closure relation for the collision operator part
of Eq. (2.3). This must be done in order to capture the correct dynamics
in situations which are close perturbations of the usual gas dynamics
equations. This point is detailed in ref. 26. Finally, moment systems of the
form (2.16) are by construction hyperbolic, which guarantees a certain
degree of well-posedness (at least in a linear sense). This point is devel-
oped in ref. 26.
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We are now going to investigate how these considerations can be
extended to the quantum case. For that purpose, we shall use the nonlocal
version of the Gibbs minimization principle.

3. ENTROPY MINIMIZATION PRINCIPLES IN THE QUANTUM CASE

We first state the entropy minimization principle in the quantum case.
To be specific, we consider a system whose objects can be described by
wave-functions k(x) belonging to the Hilbert space X=L2(Rd). In this
context, the quantum equivalent of the distribution function is the density
matrix r which is a positive, trace-class Hermitian operator on X satis-
fying: (31)

Tr{r}=1. (3.1)

The normalization condition (3.1) is the quantum counterpart of (2.1).
Then, the spectrum of r consists of a decreasing sequence of positive
eigenvalues (aa)a=1,..., . tending to 0 as a Q . and the associated eigen-
vectors fa constitute a Hilbert basis of X. Moreover, because of (3.1), we
have

C
.

a=1
aa=1.

The elementary wave-function fa represents a pure state, while the datum
of a density matrix r represents a mixed state. The eigenvalues aa represent
the probability for the system to be in the state fa.

Any observable defined by a Hermitian operator A on X gives rise to
an observation OAPr on the system modeled by r according to the formula

OAPr=Tr{rA},

where rA denotes the operator multiplication of r and A. Examples of
such observables are the mean position defined by the position operator X
which operates through the multiplication by x, or the mean momentum
defined by the momentum operator P=−i( Nx where ( is the reduced
Planck constant and i2=−1. More generally, we shall consider operators
Op(a) obtained from any symbol a(x, p) of the position x and momentum
p through the Weyl quantization by

Op(a) f=
1

(2p()d F
R

2d
a 1x+y

2
, p2 f(y) e i

p(x − y)
( dp dy. (3.2)
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The Weyl quantization is such that any real valued symbol gives rise to a
Hermitian operator (under regularity conditions that we shall not detail see
for instance ref. 34). The Weyl quantization (3.2) is formally related to the
Wigner transform (1.3) via the formula r=(2p()d Op(fw). Thus, Weyl
quantization and Wigner transform are (up to a factor (2p()d) inverse
operations one to each other and

Tr(r Op(a))=F
R

2d
a(x, p) fw(x, p) dx dp (3.3)

holds. Wigner functions are therefore a convenient tool to express local
moments in quantum mechanics. Entropy principles, however, are better
expressed in terms of density matrices and operators. A class of symbol
that we shall be particularly interested in are a(x, p)=l(x) · o(p) where
l=(l i(x))i=0,..., N is an arbitrary N+1-tuple of real valued functions and
o=(oi(p))i=0,..., N is the N+1-tuple of moment monomials.

We now choose a given N+1-tuple of real valued moment monomials o,
such that o0(p)=1. For any given operator r, we shall denote by Kl(r)
the expectation value of the operator Op(l(x) · o(p)) (denoted Op(l · o) for
short), i.e., for any N+1-tuple of real valued functions l=(l i(x))i=0,..., N:

Kl(r)=Tr{r Op(l · o)}=F
R

2d
l(x) · o(p) fw(x, p) dx dp. (3.4)

Kl(r) is therefore the observation corresponding to a certain combination
of the moment monomials oi(p), weighted by x-dependent factors l i(x).
The mapping l Q Kl(r) is a linear functional defined on the set of real
valued functions l(x) which, by duality, defines a N+1-tuple of real valued
functions m[r] :=m(x)=(mi(x))i=0,..., N, which are functions of x, accord-
ing to

Kl(r)=F
R

d
l(x) · m(x) dx, -l(x) real valued. (3.5)

These moments are nothing but the local moments of the Wigner distribu-
tion function fw in the usual sense:

m[r](x)=F o(p) fw(x, p, t) ds dp.

Therefore, (3.5) is a way to express local moments of the Wigner distribu-
tion function in terms of the density operator r. This formula is clearly the
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quantum equivalent of (2.7). Therefore, in the quantum framework, there
is no local relation between r and its moments m, but rather, a functional
one, through the duality (3.5).

For the sake of clarity, we give explicit expressions of the moments
m[r] expressed in terms of the density matrix r. The proof of the following
two lemmas is just an exercise in Fourier transforms using the definition
(1.3) of the Wigner function fw and the equivalence formula (3.3), and is
left to the reader. We start with the following expression of Op(l · o).

Lemma 3.1. Let b=(b1,..., bd) ¥ Nd be a multi-index (with N the
set of natural integers) and denote by pb=pb1

1 · · · pbd
d and “/“xb=

“/“xb1
1 · · · “/“xbd

d . Then, for any smooth real or complex-valued function
n(x), we have the two following equivalent expressions of the operator
Op(pbn):

Op(pbn) f=(−i() |b| C
b1

c1=0
· · · C

bd

cd=0

Rb1

c1

S · · ·Rbd

cd

S 1
2 |c|

“n

“xc

“f

“xb − c
, (3.6)

Op(pbn)=
1

2 |b| C
b1

c1=0
· · · C

bd

cd=0

Rb1

c1

S · · ·Rbd

cd

S pcnpb − c, (3.7)

where |b|=b1+ · · · +bd and (bi
c i

) is the binomial coefficient. We denote by
n the multiplication operator by the function n(x). Because n does not
commute with pi, the orders of the factors in the right-hand side of (3.7)
matters.

The local moments are given as operators acting on the integral kernel
of the operator r by:

Lemma 3.2. Let b ¥ Nd be a multi-index and let mb[r] be the
moment of r associated with the monomial pb, i.e., satisfying

mb(x)=F
R

d
pbfw(x, p) dp, Tr{r Op(pbn(x))}=F

R
d

mb(x) n(x) dx,

for any test function n(x). Let r(x, xŒ) be the integral kernel of the operator
r in the position representation, i.e., the operator r acts on any square
integrable function f(x), x ¥ Rd according to

rf(x)=F
R

d
r(x, xŒ) f(xŒ) dxŒ. (3.8)
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Then, mb is given by

mb(x)=1 i(
2
2 |b|

C
b1

c1=0
· · · C

bd

cd=0

Rb1

c1

S · · ·Rbd

cd

S (−1) |c| 1 “

“xc

“

“xŒ
(b − c) r2:

(x, x)
.

(3.9)

This lemma shows that, as soon as the integral kernel r(x, xŒ) is
smooth enough, the moment mb is a function. Otherwise, mb may be a
singular distribution.

Now, we turn to the definition of entropy. By functional calculus, any
continuous function h (and by duality, any measure) defined on the interval
R+ gives rise to an operator h(r) defined by

h(r) f= C
.

a=1
h(aa)(f, fa)X fa,

where ( · , · )X denotes the scalar product in X (supposed linear with respect
to the left entry and antilinear with respect to the right entry). Let h be a
strictly convex function on R+. Then, we define the quantum entropy H of
r with respect to h according to

H(r)=Tr{h(r)}. (3.10)

We now formulate the quantum entropy minimization principle:
let m(x) be a N+1-tuple of moment functions (defined on Rd) such that
> m0 dx=1. Find rm such that

H(rm)=min 3H(r) | r satisfies Kl(r)=F
R

d
l(x) · m(x) dx,

- real valued l(x)=(l i(x))i=0,..., N
4 . (3.11)

We see that this minimization problem is the quantum equivalent of
problem (2.6). The constrained optimization problem (3.11) can be
rephrased as a saddle-point problem for the Lagrangian

Lm(r, l)=H(r) −1Kl(r) − F
R

d
m(x) · l(x) dx2 , (3.12)

according to

H(rm)=min
r

max
l

Lm(r, l)=max
l

min
r

Lm(r, l), (3.13)
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where now the minimum over r or the maximum over l are unconstrained
problems. Again, we stress the fact that l=(l i(x))i=0,..., N is a N+1-tuple
of functions of x.

To pursue the analysis, we need the following two lemmas, the proofs
of which are deferred to Appendix B. From now on, derivatives denoted
with a d will refer to Gâteaux derivatives. The Gâteaux derivative dH/dr

of a function H(r) (if it exists) is a linear form acting on increments dr

according to

dH
dr

dr=lim
t Q 0

31
t

[H(r+t dr) − H(r)]4 .

A necessary condition for extremality of H is that its Gâteaux derivative
vanishes (first order Euler–Lagrange equation of the extremality problem).

Lemma 3.3. Let h be a strictly increasing continuously differen-
tiable function defined on R+. Consider that H(r) is defined on the space
of Trace-class positive self-adjoint operators r. Then H is Gâteaux differ-
entiable and its Gâteaux derivative dH/dr is given by:

dH
dr

dr= C
.

a=1
hŒ(aa) draa=Tr{hŒ(r) dr}, (3.14)

where aa are the eigenvalues of r, and draa are the diagonal values of the
perturbation operator dr in the basis of the eigenfunctions fa of r.

Lemma 3.4. Let h be a strictly convex twice continously differen-
tiable function on R+. Then, H is strictly convex and is twice Gâteaux-
differentiable, with:

d2H
dr2 (dr, dr)=C

a, r

hŒ(aa) − hŒ(ar)
aa − ar

|drar |2, (3.15)

where the quotient is understood to be hœ(aa) when aa=ar. The perturba-
tion operator dr is assumed Hermitian.

In fact, Nier (30) has proved infinite Frechet differentiability of h
(provided h is a C. function) and has given proofs of formulae (3.14) and
(3.15). However, his proof uses the theory of Hellfer and Sjöstrand (21) of
almost analytic extensions in functional calculus. In the appendix, for the
reader’s convenience, we give elementary proofs of the weaker statements
(3.14) and (3.15).
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Let us now consider the unconstrained problem

Lm(rl, l)=min
r

Lm(r, l). (3.16)

Then, we have:

Lemma 3.5. The necessary condition for extremality for the uncon-
strained minimization problem (3.16) is

rl=(hŒ)−1 (Op(l · o)) (3.17)

where (hŒ)−1 is the inverse function of hŒ.

The operator rl is called the equilibrium density operator associated
with the N+1-tuple l of entropic variables. We stress the fact that, in
this theory, l is a N+1-tuple of functions of the position variable x and
not mere constants. Formula (3.17) must be understood in the sense of
functional calculus, which is possible via the spectral theorem, since the
operator Op(l · o) is Hermitian. (31) The proof of Lemma 3.5 is deferred to
Appendix A.

Now, the solution rm of the constrained minimization problem (3.11)
is an equilibrium density operator rl where l=mm is a solution of the
unconstrained maximization problem

H(rm)=Lm(rm m, mm)=max
l

Lm(rl, l). (3.18)

We have:

Lemma 3.6. The solution rm of the constrained Gibbs minimization
problem (3.11) or equivalently, of the unconstrained maximization problem
(3.18) is given by

rm=rm m, (3.19)

where mm is such that

Kl(rm m)=F
R

d
m(x) · l(x) dx, -l(x). (3.20)

By duality, relation (3.20) expresses that the moments of rm m are m (see
(3.5)). It is the quantum extension of (2.15). Again, the entropic variables m
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(which are functions of x) and the moment (or conservative) variables m
(which are also functions of x) are dual (in the Legendre transform sense)
through the fluid entropy (which is now a functional on functions of x, see
Section 4). For the proof see Appendix A.

4. THE QUANTUM FLUID ENTROPY

We now discuss the concept of fluid entropy in the framework of the
present theory. Let m=(mi(x))i=0,..., N be a given N-tuple of fluid moments
(which are functions of the position variable x). We define the fluid
entropy S(m) by

S(m)=H(rm). (4.1)

For S, we can prove:

Lemma 4.1.

(i) S is strictly convex.

(ii) We have

dS

dm
=mm, (4.2)

where dS/dm is the Gâteaux derivative of S with respect to m.

Equation (4.2) shows another aspect of the duality between m and m,
namely that they are dual through the entropy. Of course, this relation
extends a well-known relation in the classical case. The proof can be found
in Appendix A.

To highlight the duality between the entropic variables m and the
moments (or conservative variables) m, we show how relation (4.2) can be
inverted by means of the Legendre dual of the entropy. Define

S(m)=S(m) − F
R

d
m · m dx, (4.3)

where m is such that (dS/dm)(m)=m (or in other words, such that
mm=m, i.e., m is the set of moment of rm). We have the following lemma,
the proof of which is given in Appendix A.
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Lemma 4.2.

(i) S is strictly concave.

(ii) We have

dS

dm
=−m. (4.4)

The function S is sometimes called the Massieu–Planck function. (4)

Remark 4.1. In equilibrium statistical mechanics (see, e.g., ref. 4)
the constraints are global, i.e., are written

Tr{roi}=mi, -i=0,..., N,

where (oi)i=0,..., N are the operators corresponding to the global observables
(e.g., the total energy: o=Ĥ) and (mi)i=0,..., N are N+1 real numbers.
Among these constraints, the first one, corresponding to o0=1 and m0=1,
has a special status. Indeed, it does not say anything about the thermo-
dynamical state of the system, but simply expresses that r is a statistical
operator, i.e., satisfies (3.1). The associated equilibrium is written:

rm=(hŒ)−1 1 m0+ C
N

i=1
m ioi

2 ,

where m i are now constants. If we further specialize to the Boltzmann
entropy (2.22), we get:

rm=exp 3 1
kB

1 m0+ C
N

i=1
m ioi

24=
1
Z

exp 3 1
kB

1 C
N

i=1
m ioi

24 , (4.5)

where Z is the so-called partition function. Z can be viewed as a function
of m1,..., mN if rm is constrained to satisfy (3.1), indeed:

Z{m1,..., mN}=Tr 3exp 3 1
kB

1 C
N

i=1
m ioi

244 .

It can be shown that ln Z coincides with − S (up to a constant), i.e., we
have:

d ln Z
dm i

=mi, i=1,..., N.
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In our case however, since the m i’s are no longer constant but instead
functions of x, it is impossible to factor out the contribution of m0 outside
the exponential. This is because m0(x) and ;i m i(x) oi are operators which
do not commute in general. So, in our framework, there is no such object
as a partition function. However, the Massieu function S is well-defined
by (4.3) and can be used to define the moments m as functionals of the
Lagrange multipliers m. L

Remark 4.2. At this point, it is appropriate to compare our
approach to the NESOM theory (for Non-Equilibrium Statistical Operator
Mechanics), which has been pioneered by Zubarev et al. (see, e.g., ref. 36)
and has been later expanded by Luzzi, Vasconcellos, and coworkers. The
reader can refer, e.g., to refs. 27 and 28 for reviews. This approach consists
in extending formula (4.5) into a formula for a local equilibrium according
to

rm=
1
Z

exp 3 1
kB

1 C
N

i=1
F m i(r, t) oi(r, t) dr24 , (4.6)

where oi(r, t) are local versions of the moment operators o corresponding
to the conserved quantities.

The expression > m i(r, t) oi(r, t) dr inside the exponential bears strong
similarities with our introduction of the observable m · o and formula (4.6)
is close to our formula (3.17) which, in the case of the Boltzmann entropy
(2.22), would reduce to

rm=exp 3 1
kB

(Op(m · o))4 . (4.7)

In the cited references, the local operators oi(r, t) are not further
precised. If we assume that they are localizations of the global moment
operators oi(p) in the way outlined in the introduction, i.e., something
like oi(r, t)=Op(oi(p) d(x − r)), then the expression ;i > m i(r, t) oi(r, t) dr
coincides with Op(m · o). However, unless this is identification is made, the
two approaches do not give the same results. Also, as pointed out in the
previous remark, the factoring out of partition function in (4.6) looks
somehow suspicious. However, the two approaches have clearly similar
roots and the added value of our approach is to provide a neat mathemat-
ical framework to the notion of locally conserved variables by means of the
operators Op(m · o) and the dual concept of moments, as developed in
Section 3. This framework may in turn prove powerful for future exten-
sions and applications of the theory. L
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5. QUANTUM MOMENT HYDRODYNAMICS

5.1. General Framework

The time evolution of the density matrix can de derived from the
Schrödinger equation and is given by the quantum Liouville equation for
the density matrix (or von Neumann equation):

i(
“r

“t
=[Ĥ, r]+i(Q(r), (5.1)

where Ĥ is the particle Hamiltonian, [Ĥ, r]=Ĥr − rĤ is the commutator
of Ĥ and r and Q(r) is an abstractly defined collision operator taking care
of dissipation phenomena. To fix the ideas, we can think of Ĥ as being the
simple Hamiltonian on Rd

Ĥf=−
(

2

2mg Df+Vf=Op 1 |p|2

2mg+V2 f, (5.2)

where V=V(x, t) is the potential.
About the collision operator Q, we specifically request the following:

(i) Q locally conserves the moments associated with o(p), i.e.,

F Qw(fw)(x, p) oi(p) dp=0, i=0,..., N, -x ¥ R3,

where Qw is the Wigner transform of Q.

(ii) Q(r) dissipates the quantum entropy, i.e.,

Tr{Q(r) hŒ(r)} [ 0.

An example of such an operator is the BGK operator of Section 5.5 (we
shall prove in ref. 8 that it is consistent with entropy dissipation, i.e., that
property (ii) holds). In ref. 10, we also derive a Boltzmann-like collision
operator for binary quantum collisions precisely on the basis of these two
requirements.

From (5.1), we want to derive a system of conservation equations
using a similar route as that exposed in Section 2 for the classical case.
First, from (5.1) we derive a system of equations for the moments, and
then, use the equilibrium density matrix rl to express all the quantities that
cannot be directly expressed as moments. However, there is a significant
difference from the classical case, in that the moments are not defined
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directly but rather, from duality through the linear forms Kl(r). Therefore,
the moment equations come naturally in duality form (or in weak form, in
the sense of Partial Differential Equations theory).

Define m[r] to be the moments of r, through the duality relation
(3.5). To obtain the moment equations, we compose (5.1) on the right by
Op(l · o) and take the trace. We obtain:

“

“t
F

R
d

m[r(t)](x) · l(x) dx=Tr 315−
i
(

Ĥ, r6+Q(r)2 Op(l · o)4 , -l(x).
(5.3)

Equation (5.3) is the quantum equivalent of (2.3). However, the right-hand
side cannot be expressed in general in terms of the moments m[r(t)]. This
is the closure problem.

We close Eq. (5.3) by using the solution rm=rm m of the Gibbs mini-
mization problem (3.11) with moments m=m[r(t)]. We find

“

“t
F

R
d

m(x, t) · l(x) dx

=Tr 315−
i
(

Ĥ, rm m(t)6+Q(rm m(t))2 Op(l · o)4 , -l(x). (5.4)

Equation (5.4) is a quantum moment closure system for the set of moments m,
which we refer to as ‘‘Quantum Moment Hydrodynamics.’’ Rewriting (5.4)
in terms of Wigner functions instead of density matrices, one can now
return to a strong formulation of the moment system. Equation (5.4) is
equivalent to the weak formulation of

“tm+F
R

d
o(p)3Nx ·1 1

mg pfm
w
2− h[V] fm

w
4 dp=F

R
d

o(p) Qw(fm
w ) dp,

(5.5)

where fm
w (x, p, t) is the closure Wigner function corresponding to rm m(t), i.e.,

fm
w (x, p, t)=(2p()−d Op−1(rm m(t))

=(2p)−d F
R

d
rm m(t) 1x −

(

2
g, x+

(

2
g2 e ig · p dg (5.6)

holds.
We now investigate several examples and consequences of this

methodolgy. In all these examples, otherwise explicitely stated, we shall
restrict to the case of the Hamiltonian (5.2).
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5.2. Quantum Hydrodynamics

Our first use of the present framework is the derivation of the
quantum hydrodynamic equations, which are the quantum counterpart
of the classical hydrodynamic system (2.25)–(2.27). For this purpose, we
again consider the d+2-tuple of moment functions (2.21), i.e., o(p)=
(1, (pi)i=1,..., d, |p|2/(2mg)). We first derive the moment equations from the
Wigner function formulation (5.5). In analogy to the classical case, change
from the moment variables mi to density n, ensemble velocity u and tem-
perature T via the formulas

m0=n=F
R

d
fm

w dp, mi=qi=mgnui=F
R

d
pi fm

w dp, i=1,..., d

md+1=W=
n(mg |u|2+dkBT)

2
=F

R
d

|p|2

2mg fm
w dp.

The moment system (5.5) is then of the form

(a) “tn+Nx · (nu)=0,

(b) “tmgnu+Nx · (mguuTn+P)+n NxV=OpPcoll,

(c) “tn(mg |u|2+dkBT)+Nx · [n(mg |u|2+dkBT) u+2Pu+2qH]

+2n NxV · u=7 |p|2

mg
8

coll

(5.7)

with the pressure tensor P and the heat flux qH given by

P=
1

mg F
R

d
(p − mgu)(p − mgu)T fm

w dp,

2qH=
1

(mg)2 F
R

d
|p − mgu|2 (p − mgu) fm

w dp.

(5.8)

The closure, i.e., P and qH, has to be computed using the closure Wigner
function fm

w which in turn is given by the closure operator rm m via (5.6).
Note that the quantum hydrodynamic equations coincide with the classical
hydrodynamic system (2.25)–(2.27), except for the form of the pressure
tensor P and the heat flux qH. (For the Maxwellian closure (2.23),
P=kBnTI and qH=0 holds.) The terms OpPcoll and O |p|2

m*Pcoll on the right
hand side of (5.7) denote the corresponding moments of the collision
operator evaluated at fm

w and have to be computed from the closure in
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terms of n, u, T in the same way as the pressure tensor and the heat flux.
They vanish identically in the case when collision operator Qw conserves
mass momentum and energy.

We now turn to the computation of fm
w and rm m. Let l be a Lagrange

multiplier, i.e., a d+2-tuple of real valued functions of x. Using the inter-
pretation of classical thermodynamics, we can write l=(mc

T̄ , ū
T̄ , − 1

T̄) where
mc(x), ū(x), and T̄(x) will be called respectively local chemical potential,
velocity and temperature. Note that ū and T̄ will in general be different
from the ensemble velocity and temperature u and T in (5.7) which are
defined directly from the moments of the Wigner function, in contrast with
the classical case for which u=ū and T=T̄ holds. Then:

l(x) · o(p)=
1

T̄(x)
1mc(x)+ū(x) · p −

|p|2

2mg
2 . (5.9)

A straightforward computation leads to the expression of Op(l · o):

Op(l · o) f :=Op[mc, ū, T̄] f

=
(

2

2mg N ·1 1
T̄

Nf2− i(
1
2
1N ·1 ū

T̄
f2+

ū
T̄

· Nf2

+1mc

T̄
+

1
4

(
2

2mg D
1
T̄
2 f. (5.10)

It is readily checked that Op[mc, ū, T̄] is a Hermitian operator.
Now, as soon as T̄(x) \ 0 a.e. (which we are going to assume from

now on), Op[mc, ū, T̄] is an unbounded operator from below and is
bounded from above. Thus, assuming that the spectrum of Op[mc, ū, T̄]
consists of a discrete sequence of eigenvalues (aa[mc, ū, T̄])a=1,..., ., we
have lima Q . aa=−.. Let us denote by fa the associated Hilbert basis of
eigenfunctions. By definition, the equilibrium operator rl=rmc, ū, T̄=(hŒ)−1

× (Op[mc, ū, T̄]) is given, for any f ¥ X by:

rmc, ū, T̄ f= C
.

a=1
aa[mc, ū, T̄](f, fa)X fa, aa[mc, ū, T̄]=(hŒ)−1 (aa[mc, ū, T̄]).

(5.11)

Like in Section 2, let us denote by m=(n, q, W) the vector of moments,
with n(x) > 0 the probability of presence (satisfying > n(x) dx=1), q(x) ¥ Rd

the mean momentum per particle, and W(x) the mean energy per particle
(i.e., respectively the density, momentum and energy divided by the total
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number of particles N). The equilibrium operator rn, q, W, subject to the
constraints (3.20) is a solution of the maximization problem (3.18), which,
in the present case, is written:

max
mc, ū, T̄

3 C
.

a=1
g(aa[mc, ū, T̄])+F

R
d
1mc

T̄
(x) n(x)+

ū
T̄

(x) · q(x) −
1
T̄

(x) W(x)2 dx4 ,

(5.12)

with g(s)=h p (hŒ)−1 (s) − s (hŒ)−1 (s). We note that the first term in the
curly bracket of (5.12) is nothing but the Massieu–Planck potential (4.3)
and that (5.12) itself is a reformulation of relation (4.4) as a minimization
problem.

Now, if we specialize to the Boltzmann entropy (2.22), we have
(hŒ)−1 (s)=es, g(s)=−e s, and so rmc, ū, T̄=exp{Op[mc, ū, T̄]} is given by
(5.11) with

aa[mc, ū, T̄]=eaa[mc, ū, T̄]. (5.13)

Since rmc, ū, T̄ is a statistical operator, it satisfies (3.1) and therefore, we must
have

C
.

a=1
eaa[mc, ū, T̄]=1. (5.14)

In particular, this implies that all eigenvalues of Op[mc, ū, T̄] must be
strictly negative or in other words, that − Op[mc, ū, T̄] must be an elliptic
operator. Furthermore, the eigenvalues must tend sufficiently fast to − .

for the series (5.14) to be convergent and have a sum equal to 1. Therefore,
we must restrict the set of trial functions of the maximization problem
to functions which guarantee such a property to the operator. Now, the
optimization problem (5.12) for the Boltzmann entropy (2.22) is written:

max
mc, ū, T̄

3 − C
.

a=1
eaa[mc, ū, T̄]+F

R
d
1mc

T̄
(x) n(x)+

ū
T̄

(x) · q(x) −
1
T̄

(x) W(x)2 dx4 .

(5.15)

We can guess that this problem has some chances to have a unique
solution. For instance, if we focus on the extremal value with respect to T̄
(with fixed ū/T̄ and mc/T̄), we see that aa[mc, ū, T̄] is an increasing func-
tion of T̄. Therefore, the first term in (5.15) is a decreasing function of T̄
while the second term is an increasing one. Furthermore, as T̄ approaches 0,
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aa[mc, ū, T̄] Q − ., exp aa Q 0 and the first term tends to 0, while the
second one tends to − . (we suppose that W > 0). Conversely, if T̄ Q .,
we have aa[mc, ū, T̄] Q 0, exp aa Q 1 and the sum diverges, making the first
term tend to − ., while the second one tends to 0. Therefore, the expres-
sion to be maximized in (5.15) tends to − . at the boundaries of the
domain of variation of T̄. Of course, this argument is not rigorous, since T̄
is a function and some care has to be taken in making sense to the fact that
T̄ tends to 0 or to .. Also, the influence of the other parameters ū/T̄ and
mc/T̄ has to be studied. A rigorous investigation of this problem is deferred
to future work.

In classical mechanics, the system of hydrodynamics equations is
hyperbolic, i.e., the matrix of the derivatives of the flux functions with
respect to the state variables is diagonalizable with real eigenvalues. These
eigenvalues are the speeds of propagation of the various types of waves.
Asking whether system (5.7) is hyperbolic in this sense would be mea-
ningless. Indeed, since the flux functions are not local functions of the state
variables, it would be meaningless to compute the matrix of derivatives in
this way. Hyperbolicity provides a well-posedness theory, at least locally
in time. (33, 35) The well-posedness of quantum hydrodynamics systems is an
open problem so far. The fact that an entropy is decreasing in time as the
following proposition states, should be an important ingredient in such a
theory.

Proposition 5.1. Let the collision operator Qw in (1.1) dissipate the
entropy, i.e., let

Tr{Q(r) hŒ(r)} [ 0, -r, (5.16)

hold. Then, any solution (n, u, T) of system (5.7) satisfies the entropy dis-
sipation relation:

“

“t
S(n, q, W) [ 0. (5.17)

Proof. To prove the entropy conservation relation, we go back to the
notation m=(n, q, W) and use mm=(mc/T, u/T, −1/T) for the Lagrange
multiplier of the constraint m. We write, thanks to (4.2):

d
dt

S(m)=
dS

dm
“m
“t

=F
R

d
mm “m

“t
dx.
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Now, using (5.4) and the cyclicity of the trace, we have

d
dt

S(m)=Tr 3−
i
(

Ĥ[rm m(t), Op(mm · o)]+hŒ(rm m(t)) Q(rm m(t))4 .

But, by construction, the operators Op(mm · o) and rm m(t) commute. There-
fore, the right-hand side is less than zero and the result follows. L

We note that entropy conservation is not restricted to the quantum
hydrodynamic model (5.7) but is valid for all quantum moment closure
systems (5.4). In clasical hydrodynamics, it is a well established fact that
the entropy of smooth solutions is constant in time. However, classical
hydrodynamic models have discontinuous solutions (shock waves) the
entropy of which is strictly decreasing with time. It is very unlikely that
quantum hydrodynamic models exhibit shock waves solutions. The
meaning of the model for discontinuous solutions would even be very
unclear. For instance, what sense should we give to the operator (5.10) if
the coefficients are discontinous functions?

Another interesting question is how the closure (5.7) and (5.8) relates
to the Bohmian single state closure analyzed in refs. 16 and 17. The single
state closure corresponds to the case of zero temperature, when all particles
become statistically completely independent, i.e., the Boltzmann or Fermi–
Dirac distribution reduces to a d-function. Since, when using the Boltzmann
entropy, we close the moment system essentially by exp(Op(mo)) the same
limit can probably be carried out by letting T Q 0 in (5.7a, b) for finite (.
Carrying out this limit is however not by no means simple, since it involves
computing the limiting solution of the minimization problem.

5.3. Quantum Moment Hydrodynamics

With this term, we refer to all quantum moment closure systems (5.4)
constructed from a larger basis of monomials than that of hydrodynamics.
Therefore, we consider a finite subset B of Nd (where N is the set of
natural integers) and consider multi-indices b=(b1,..., bd) ¥ B. We suppose
that 0 ¥ B, ei ¥ B for all i ¥ {1,..., d} (where ei=(bj)j=1,..., d with bj=dij).
Let b be the cardinal of B and consider the b-tuple of moment monomials
o(p)=(pb)b ¥ B. Additionally, we suppose that the space generated by
o(p) contains |p|2. In this way, it contains the hydrodynamic monomials
(1, pi, |p|2) and the associated quantum closure system (5.4) will contain
the quantum hydrodynamic system (5.7) as a subcase. The vector o may
contain homogeneous polynomials which are not monomials, like |p|4.
However, for notational simplicity, we shall restrict to o(p) constructed
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from simple monomials pb and leave this straightforward extension to the
reader.

We can now reproduce the procedure developed in the previous
section. We just summarize it now. First, let us denote by l(x)=(lb)b ¥ B a
b-tuple of Lagrange multipliers. Then, the operator Op(l · o) is given by:

Op(l · o)= C
b ¥ B

Op(lb · pb), (5.18)

where the expression of Op(lb · pb) is given in Lemma 3.1.
From the analysis conducted in Section 5.2 (at least with the Boltzmann

entropy (2.22)), the maximization problem (3.18) has a non-empty set of
solutions only if there is a non-empty set of l such that the operator
− Op(l · o) is elliptic. In fact, we shall request that the set of such l has
a non-empty interior. This condition is analogous to condition (III) of
Levermore’s approach (26) and is likely to lead to identical constraints on the
set of monomials to be considered. This point will be investigated in more
detail in future work. This requirement leads to a restriction on the possible
sets B.

We now suppose that this requirement is fulfilled and that the oper-
ator Op(l · o) has a sequence of negative eigenvalues (aa[l])a=1,..., . such
that aa[l] Q − . as a Q . and that the associated eigenvectors fa form a
complete orthonormal basis. Let us now denote by m(x)=(mb)b ¥ B a given
set of moments. The maximization problem (3.18) is now stated as follows
(from now on, we shall restrict to the case of the Boltzmann entropy
(2.22)):

max
l

3 − C
.

a=1
eaa[l]+F

R
d

C
b ¥ B

lb(x) mb(x) dx4 . (5.19)

Let us denote by mm the value of l which solves this maximization problem
(assuming that the solution exists and is unique) and rm=rm m, the asso-
ciated operator

rm m f= C
.

a=1
aa[mm](f, fa)X fa, aa[mm]=eaa[m m]. (5.20)

We shall derive the quantum moment hydrodynamics system in a
similar form as for the quantum hydrodynamics system. The derivation of
a form like (5.7) shall be done in a future work. Let us consider the b th
component lb of an arbitrary l and denote by bb

ar[lb] the matrix element
of the operator Op(lb pb) in the eigenbasis fa of rm. As in Section 5.2, we
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denote by Ĥar the matrix element of the Hamiltonian in the same basis, and
by Qar(r) the matrix element of Q(r). We have:

Tr{[Ĥ, rm] Op(lb pb)}=C
a, r

Ĥar(ar − aa) bb
ra[lb]. (5.21)

Finally, the system of quantum moment hydrodynamics equations can
be written according to:

“

“t
F

R
d

mb(x, t) lb(x) dx=−
i
(

C
a, r

Ĥar(ar − aa) bb
ra[lb]+C

a, r
Qar(r) bb

ra[lb],
(5.22)

-lb(x), -b ¥ B. (5.23)

This provides an evolution system for the quantities mb, which is well
adapted to a Galerkin discretization. For this system also, provided that Q
is entropy dissipative, (i.e., property (5.16) is satisfied), the entropy dissi-
pation inequality (5.17) applies and the entropy S(m) is decreasing in time.

We point out that the solution of the maximization problem (5.20)
does not always exist in the classical case (see, in particular, refs. 24
and 25). It is yet an open problem, and formidably more difficult, to solve
it in the quantum case.

5.4. A Galerkin Discretization

The main difficulty in solving the quantum hydrodynamic model (5.7)
is of course the evaluation of the pressure tensor and the heat flux vector
through formulae (5.8). Indeed, this evaluation requires the solution of the
optimization problem (5.12) or (5.15). We now roughly outline the compu-
tational complexity (and feasibility) of this problem. The moment equa-
tions (5.3) render themselves to a natural Galerkin discretization in space,
which preserves the entropy principle. We start by choosing a set of scalar
basis functions lj(x), j=1,..., J in space and approximate the moment
vector m=(m0,..., mN) in (5.3) by

mn(x, t) % C
J

j=1
z j

n(t) lj(x), n=0,..., N. (5.24)

Equation (5.3) is then replaced by

F
R

d
lj(x) “tm(x, t) dx=Tr 31−

i
(

[Ĥ, rm]+Q(rm)2 Op(ljo)4 , j=1,..., J,
(5.25)
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where rm is the solution of the constrained minimization problem

Tr(h(rm))=min 3Tr(h(r)): Tr{r Op(lj o)}=F
R

d
lj m dx, j=1,..., J4 .

(5.26)

Thus, we have replaced the minimization problem (3.11) by a problem with
finitely many constraints leading, consequently to only J(N+1) Lagrange
multiplyers. Next, we replace the density matrix r in (5.26) by a finite
expansion. We choose orthonormal basis functions kk(x), k=1,..., K, and
approximate the density matrix r by

rm(x, y) % C
K

k, l=1
Rm

klrkl(x, y), rkl(x, y)=kk(x) kl(y)g,

where Rm
kl is a Hermitian matrix and the star exponent denotes complex

conjugation. In order to arrive at a finite minimization problem, we also
have to replace the operator Op(ljo) by a finite matrix, i.e.,

Op(lj o) % C
K

k, l=1
C jn

klrkl(x, y),

C jn
kl=F

R
d

F
R

d
kk(x)g Op(ljon)(x, y) kl(y) dx dy,

and replace the minimization problem (5.26) by

Tr(h(Rm))=min 3Tr(h(R)): Tr{RC jn}=F
R

d
ljmn dx, j=1,..., J, n=0,..., N4 .

(5.27)

The symbol Tr in (5.27) denotes now just the usual matrix trace and h is
now to be understood as the function of a matrix. The Galerkin equations
(5.25) are then replaced by

F
R

d
lj(x) “tmn(x, t) dx

= C
K

kl=1
C jn

kl Tr 31−
i
h

[Ĥ, rm]+Q(rm)2 rkl
4 , j=1,..., J, n=0,..., N.

(5.28)
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(5.28) is a system of ordinary differential equations for the expansion coef-
ficients z j

n(t) after inserting (5.24) for the components mn of the moment
vector. The system (5.27)–(5.28) now clearly satisfies the same entropy
relation as given by Proposition 5.1 on a discrete level. This can be seen by
multiplying (5.28) by mjn and summation over j and n, where mjn is the
Lagrange multiplier of the minimization problem (5.27), i.e., hŒ(Rm)=
;jn mjnC jn holds. Two questions arise:

• How to choose the basis functions kk for the density matrices and the
basis functions lj for the moments?

• How large should K2, the number of density matrix basis functions,
be compared to J, the number of moment basis functions?

There is considerable freedom in the answer to the first question. One
possibility would be to choose the kk as the eigenfunctions of rm itself,
making the matrix Rm diagonal. This makes the evaluation of h(R) trivial,
but has the disadvantage that we have to compute the matrices C jn and the
matrix corresponding to the Hamiltonian Ĥ anew for each time step. It is
probably preferable to choose a ‘‘good’’ basis {kk} (say eigenfunctions
of the Hamiltonian, which are also the eigenfunctions of the equilibrium
solution e−bĤ), compute the C jn once and for all, and rather deal with the
problem of computing the matrix function h(R) in the optimization pro-
cedure. An alternative would be to use the entropy variables mjn as primary
variables, since Rm=(hŒ)−1 (;jn mjnC jn) has to hold. This has the advan-
tage of eliminating the optimization procedure but makes the ODE system
(5.28) implicit, since the term on the left hand side of (5.28) is then given by

F
R

d
ljmn dx=Tr 3C jn(hŒ)−1 1C

jŒnŒ

mjŒnŒC
jŒnŒ24 .

The easiest way to invert this equation might again be by using an optimi-
zation procedure (i.e., a discrete version of (5.19). As to the second ques-
tion: The number of degrees of freedom in the minimization problem (5.27)
is K2 (the number of elements in a K × K hermitian matrix if we count real
and imaginary parts separately). Therefore, K2 > J(N+1) has to hold, in
order to have more variables than constraints. How much larger K2 has
to be will depend on how well we wish to approximate the minimization
problem. This will have to be determined by numerical experiment.

We conclude this section with a remark about the usefulness of Wigner
functions in this context. While Wigner functions are convenient for
expressing local moments they are not the appropriate tool in this
approach. The reason for this is the following. The reason why Wigner
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functions were useful in expressing the moment equations is that the
moments of [H, r] can be expressed in terms of the moments of r in the
Wigner picture, up to a few closure terms. This property is lost here, due to
taking a finite number of expansion terms for the density matrix. If we
define by fkl the Wigner transform of the basis element rkl of the density
matrix, we obtain

C jn
kl=Tr{Op(ljon) rkl}=F

R
d

F
R

d
ljon fkl dr dp

and (5.28) becomes

F
R

d
lj(x) “tmn(x, t) dx

=F
R

d
F

R
d

C
K

kl=1
C jn

kl
3− Nx

1 1
mg pfm2+h[V] fm+Qw(fm)4 fkl dx dp,

j=1,..., J, n=0,..., N. (5.29)

Written out in more detail, the right hand side is of the form

F
R

4d
C
K

kl=1
lj(xŒ) on(pŒ) fkl(xŒ, pŒ) fkl(x, p)

×3− Nx
1 1

mg pfm2+h[V] fm+Qw(fm)4 (x, p) dx dp dxŒ dpŒ.

If now

C
K

kl=1
fkl(xŒ, pŒ) fkl(x, p)=d(xŒ − x) d(pŒ − p)

were to hold, the right hand side of (5.29) would simplify in the same way
as it did in Section 5.2. For a finite number K of expansion terms this can,
however, not be assumed.

5.5. Quantum BGK Model

Finally, we end this section about the quantum moment hierarchies by
outlining the use which can be made of the equilibrium density matrix rm

under the moment constraint m. Indeed, a density matrix equation including
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relaxation to local equilibria can be written in the spirit of the BGK model
of rarefied gas dynamics. Such a model can be written:

“r

“t
=−

i
(

[Ĥ, r] − nc(r − rm[r(t)]), (5.30)

where we haved denoted by m[r(t)] the moments associated with r at time
t according to (3.5). Usually, we shall take the hydrodynamic moments. We
shall prove in ref. 8 that such an operator is consistent with entropy decay.
The quantity nc is a collision frequency. By construction, composing on the
right by Op(l · o) where o are the hydrodynamic monomials shows that the
relaxation term r − rm[r(t)] does not appear in the evolution of the hydro-
dynamic moment equations (5.3). However, the scaling nc Q nc/e, where
e ° 1 is a small parameter representing the Knudsen number (i.e., the ratio
of the collision scale to the macroscopic scale), allows to justify (at least
formally) the hydrodynamic closure (5.4). In most of the literature, only
relaxation towards global equilibria are taken into account through equi-
libria rm associated with global constraints (like in Remark 4.1). The
present approach allows to give a meaning to ‘‘local equilibrium relaxa-
tion’’ in a quantum framework. In fact, the term ‘‘local’’ is slightly
misleading in this case. It refers to the fact that moment constraints are
functions of x. However, the relation between the moment constraints m and
the equilibrium density matrix rm is not a local one, but a functional one.

A natural question is the existence of a series of perturbative models
obtained through an expansion of the solutions of (5.30) in powers of e

(after rescaling nc Q nc/e), in the spirit of the Chapman–Enskog expansion
of the Boltzmann equation of gas dynamics (see ref. 26). This question will
be investigated in future work.

Another question is related to the possible existence of ‘‘diffusion-like’’
limits of model (5.30) (after a simulatneous rescaling nc Q nc/e and “r/“t Q
e “r/“t, with e ° 1). This question is investigated in ref. 8.

6. CONCLUSION AND FUTURE WORK

We have developed a systematic approach to construct quantum hydro-
dynamical models from appropriate closures of the quantum Liouville
equation. This approach is made possible by an adequate definition of the
local moment of a density operator. This concept is defined by duality
through the observations of the system on a suitable class of test functions.
Then, the concept of an equilibrium density matrix, a solution of the
entropy minimization principle subject to the constraints of given moments,
is developed. Taking successive moments of the quantum Liouville equation
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(in the above defined sense), it is possible to close the chain of equations
by this equilibrium operator, giving rise to a hierarchy of models called
Quantum Moment Hydrodynamic models. We have studied in more detail
the quantum hydrodynamic model corresponding to the usual hydrodynam-
ical moments and have shown that it is formally similar as the classical one
apart from nonlocal expressions of the pressure tensor and heat-flux vector.

Obviously, this paper leaves a lot of mathematical questions open:
existence of solutions for the entropy minimization problem, well-posed-
ness of the quantum hydrodynamic equations, derivation of efficient
numerical solvers, well-posedness of quantum BGK models, existence of
perturbative series expansions of solutions in the spirit of the Chapman–
Enskog expansion, derivation of quantum diffusion models (like the
quantum drift-diffusion), etc. Other pending questions are concerned with
the physical restriction of the model. One can think of taking into account
nonconstant particle number (thus requesting the use of Fock spaces),
Fermi–Dirac or Bose–Einstein statistics, spin and relativity effects together
with the inclusion of the magnetic field through the Dirac equation, etc. All
these questions clearly open a large field of investigations for the future.

APPENDIX A. QUANTUM ENTROPY MINIMIZATION PRINCIPLE:

PROOFS

In this appendix, we give the proofs of the statements related with the
quantum entropy minimization principle.

Proof of Lemma 3.5. The Euler–Lagrange equation for the mini-
mization problem (3.16) is

1dLm

dr
2:

(rl, l)
=1dH

dr
2:

rl

−1dKl

dr
2:

rl

=0. (A.1)

Thanks to the linearity of Kl(r) with respect to r, we have, for any self-
adjoint, trace class operator dr:

1dKl

dr
2:

r

dr=Tr{(dr) Op(l · o)}=C
a, r

drarara,

where we denote by aar the matrix element of the operator Op(l · o) in the
eigenbasis of r. Then, thanks to (3.14), the Euler–Lagrange equation (A.1)
is written:

C
.

a=1

1hŒ(aa(r)) draa − C
.

r=1
drarara

2=0,
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for all Hermitian, trace class operators dr. Choosing draŒrŒ=daŒadrŒr+daŒrdrŒa

or draŒrŒ=i(daŒadrŒr − daŒrdrŒa) where daŒrŒ is the Kronecker symbol, with a ] r,
we deduce that aar must be equal to zero, i.e., that r must be diagonal in
the basis where the operator Op(l · o) is diagonal. Such a basis always
exist, since Op(l · o) is Hermitian (because l(x) and o(p) are real func-
tions) at least in the generalized sense, (i.e., in the sense of the spectral
measure if Op(l · o) has continuous spectrum, see ref. 31). Then, taking
draŒrŒ=daŒadrŒa, we deduce that

hŒ(aa(r))=aaa,

i.e.,

aa(r)=(hŒ)−1 (aaa),

which is precisely the definition of r being given by (3.17). L

Proof of Lemma 3.6. The Euler–Lagrange equation of the maxi-
mization problem reads (where we drop the superscript m):

1dLm

dr
2:

(rm, m)

1drl

dl
2:

m

+1dLm

dl
2:

(rm, m)
=0. (A.2)

But, by the Euler–Lagrange equation of the minimization problem (A.1),
since rm realizes the minimum, the first term is identically zero. Therefore,
m is characterized by

1dLm

dl
2:

m

=0.

By linearity of Lm with respect to l, we have:

1dLm

dl
2:

m

dl=−1Tr{rmOp(dl · o)} − F
R

d
m(x) · dl(x) dx2=0,

for any N-tuple dl=(dl i(x))i=1,..., N of arbitrary functions dl i(x), which is
exactly relation (3.20) (with dl=l). It is easy to show that this extremum
is indeed a maximum. This classical point is left to the reader. L

Proof of Lemma 4.1.

(i) We use that H is strictly convex (by virtue of Lemma 3.4. There-
fore, let m and mŒ be two moment vectors and t ¥ [0, 1]. Then:
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S(tm+(1 − t) mŒ)

=H(r tm+(1 − t) mŒ)

=min 3H(r) | Tr{r Op(l · o)}=F
R

d
l · (tm+(1 − t) mŒ) dx, -l(x)4 .

But we have

Tr{(trm+(1 − t) rmŒ) Op(l · o)}

=t Tr{rm Op(l · o)}+(1 − t) Tr{rmŒ Op(l · o)}

=t F
R

d
l · m dx+(1 − t) F

R
d

l · mŒ dx

=F
R

d
l · (tm+(1 − t) mŒ) dx.

Therefore, trm+(1 − t) rmŒ satisfies the constraints and consequently:

H(r tm+(1 − t) mŒ) [ H(trm+(1 − t) rmŒ).

Now, using the strict convexity of H, we have:

H(r tm+(1 − t) mŒ) < tH(rm)+(1 − t) H(rmŒ),

or,

S(tm+(1 − t) mŒ) < tS(m)+(1 − t) S(mŒ),

which proves the strict convexity of S, i.e., point (i).

(ii) We write:

dS

dm
=

d

dm
(Lm(rmm, mm))

=
dLm

dm
(rm m, mm)+1dLm

dr
(rm m, mm)

drl

dl
(mm)+

dLm

dl
(rm m, mm)2 dmm

dm

=
dLm

dm
(rm m, mm),
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where the last equality follows from the fact that mm is a solution of the
Euler–Lagrange equation (A.2). Therefore, for any perturbation dm=
(dmi(x))i=1,..., N, we have

dS

dm
dm=

dLm

dm
(rm m, mm) dm=F

R
d

mm(x) · dm(x) dx,

which exactly means (4.2) by duality. L

Proof of Lemma 4.2.

(i) S can be defined as

S(m)=min
m

3S(m) − F
R

d
m · m dx4 ,

and a minimum of linear functions, which are concave functions, is
concave.

(ii) We have:

dS

dm
dm=

dS

dm
dm
dm

dm − F
R

d
dm · m dx − F

R
d

m ·
dm
dm

dm dx.

But, with (4.2), the first term of the right-hand side cancels the last one and
we have

dS

dm
dm=−F

R
d

dm · m dx,

which proves (4.4). L

APPENDIX B. PROPERTIES OF THE QUANTUM ENTROPY H

The proofs of Lemmas 3.3 and 3.4 can be found, e.g., in ref. 30. Here,
we give an elementary proof of these results.

Proof of Lemmas 3.3 and 3.4. Let dr be a self-adjoint trace-class
operator. By the definition of the Gâteaux differentiability, we wish to
investigate if the following limit exists:

dH
dr

dr=lim
t Q 0

51
t

(Tr{h(r+tdr)} − Tr{h(r))}6 .
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We can choose variations dr the expressions of which are given by either of
the following formulae in the eigenbasis fa of r:

draŒrŒ=
h

2
(daŒadrŒr+daŒrdrŒa), (B.1)

draŒrŒ=
ih
2

(daŒadrŒr − daŒrdrŒa), (B.2)

where daŒrŒ is the Kronecker symbol and h is a real number. Indeed, any
variation dr can be decomposed into a (possibly infinite but convergent)
sum of such variations. The elementary dr is still trace-class and self
adjoint. It is then enough to investigate the influence of the perturbation on
the space spanned by (fa, fr). We investigate the following three cases:

(i) a=r. Then, aa(r+tdr)=aa(r)+th and therefore,

h(aa(r+tdr))=h(aa(r))+th hŒ(aa(r))+
t2h2

2
hœ(aa(r))+o(t2),

as t Q 0. Therefore, in this case,

dH
dr

dr=hŒ(aa(r)) draa,
d2H
dr2 (dr, dr)=hœ(aa(r)) |draa |2.

(ii) a ] r and aa ] ar. Then, in the basis (fa, fr), the matrix r+tdr is
written as follows (respectively in the cases (B.1) and (B.2)):

r+tdr=R aa ht/2
ht/2 ar

S or r+tdr=R aa iht/2
− iht/2 ar

S .

In these two cases, the eigenvalues of r+t dr are the same. Suppose that
aa > ar to fix the ideas. Then, they are given by

aa(t)=
1
2

(aa+ar+`(aa − ar)2+h2t2)=aa+
t2h2

4(aa − ar)
+o(t2),

ar(t)=
1
2

(aa+ar − `(aa − ar)2+h2t2)=ar −
t2h2

4(aa − ar)
+o(t2),

as t Q 0. Thus,

h(aa(t))+h(ar(t))=h(aa)+h(ar)+
t2h2

4
hŒ(aa) − hŒ(ar)

aa − ar
+o(t2).
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Therefore, in this case, we have:

dH
dr

dr=0,
d2H
dr2 (dr, dr)=

hŒ(aa) − hŒ(ar)
aa − ar

(|drar |2+|drra |2).

(iii) a ] r and aa=ar=a. Then,

aa(t)=a+|th|/2, ar(t)=a − |th|/2.

It follows that

h(aa(t))+h(ar(t))=2h(a)+
t2h2

4
hœ(a)+o(t2).

Then, we deduce that:

dH
dr

dr=0,
d2H
dr2 (dr, dr)=hœ(a)(|drar |2+|drra |2).

Collecting the results in the above three cases, leads to formulae (3.14)
and (3.15). L
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